
Statistics Review Part 2

Distributions, Sampling, 
Estimation



Review: Expected Values

• Think of the expected value (or mean) of a RV as the long-
run average value of the RV over many repeated trials

• You can also think of it as a measure of the “middle” of a 
probability distribution, or a “good guess” of the value of a 
RV

• Denoted E(X) or µX• Denoted E(X) or µX

• More precisely, E(X) is a probability-weighted average of all 
possible outcomes of X

• Example: rolling a die
– f(1) = f(2) = f(3) = f(4) = f(5) = f(6) = 1/6
– E(X) = 1*(1/6) + 2*(1/6) + 3*(1/6) + 4*(1/6) + 5*(1/6) + 6*(1/6)

= 1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6
= 21/6 = 3.5

• interpretation?



Review: More about E(X)

• The general case for a discrete RV
– Suppose RV X can take k possible values x1, x2, ... , xk with 

associated probabilities p1, p2, ... , pk then
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• The general case for a continuous RV involves an integral

• E(X) is a “mathematical operator” (like +, -, *, /).
– It is a linear operator, which means we can pass it through 

addition and subtraction operators

– That is, if a and b are constants and X is a RV,
E(a + bX) = a + bE(X)
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Review:Conditional Distributions

• The distribution of a random variable Y conditional on 
another random variable X taking a specific value is 
called the conditional distribution of Y given X.

• The conditional probability that Y takes value y when X
takes value x is written Pr(Y= y | X = x).takes value x is written Pr(Y= y | X = x).

• In general, 

• Intuitively, this measures the probability that Y = y and 
X=x, given that X = x.
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Review: Conditional Expectation
• The mean of the conditional distribution of Y given X is called the 

conditional expectation (or conditional mean) of Y given X.
• It’s the expected value of Y, given that X takes a particular value.
• It’s computed just like a regular (unconditional) expectation, but 

uses the conditional distribution instead of the marginal.
– If Y takes one of k possible values y1, y2, ... , yk then:

k
– If Y takes one of k possible values y1, y2, ... , yk then:
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Review: Table of Means

                        1111999977770000ssss                                    2222,,,,666677779999                                33333333333366665555
                        1111999966660000ssss                                    1111,,,,222266660000                                33331111777766660000
                        1111999955550000ssss                                            555577773333                                33330000666688882222
BBBBeeeeffffoooorrrreeee    1111999955550000                                                66666666                                22227777555566661111
                                                                                                                                                        
CCCCoooohhhhoooorrrrtttt                                            NNNN((((WWWWAAAAGGGGEEEESSSS))))        mmmmeeeeaaaannnn((((WWWWAAAAGGGGEEEESSSS))))
IIIImmmmmmmmiiiiggggrrrraaaannnntttt                
                                                                                                                                                        

                                                                                                                                                        
        TTTTeeeemmmmppppoooorrrraaaarrrryyyy                                            666600008888                                22221111777733337777
            CCCCddddnnnn----BBBBoooorrrrnnnn                                11117777,,,,777733330000                                33338888333311117777
                        2222000000000000ssss                                    2222,,,,444466663333                                11117777111100003333
                        1111999999990000ssss                                    5555,,,,444411112222                                22220000222288883333
                        1111999988880000ssss                                    2222,,,,444411116666                                22227777444477778888
                        1111999977770000ssss                                    2222,,,,666677779999                                33333333333366665555

This is a Table of Means. But, we can interpret it as an (estimate of)
a table of conditional expectations.

What is Y in the conditional expectation formula? What is X?
What are the probabilities: 
What are we summing over?

( )Pr |iY y X x= =



Review: Uniform Distribution

• uniform distribution is completely characterised by two 
parameters: a,b

• if X~U(a,b), (“the r.v. X is uniformly distributed between a
and b”) then
– f(x)=1/(b-a) and  F(x)=(x-a)/(b-a)
– special case: if a=0 and b=1 gives the “standard uniform”– special case: if a=0 and b=1 gives the “standard uniform”

• f(x)=1 and F(x)=x

• lots of things are uniform: 
– values of a roll of a single die; probability of rain falling on a 

particular part of the sidewalk; 
• as with any distribution, P[y<x<z]=F(z)-F(y)

– P[y<x<z]=(z-a)/(b-a)-(y-a)/(b-a)=(z-y)/(b-a)
– draw pictures (tails, range), do calculations



Some Useful Probability 
Distributions

• There are four important probability distributions that we’ll encounter 
repeatedly:
– The Normal distribution
– The Chi-square distribution
– Student’s t distribution
– Snedecor’s F distribution
– the normal is the basis of all of these: the last 3 are derived from the first– the normal is the basis of all of these: the last 3 are derived from the first

• Why are these important?
– Most theory regarding the classical linear regression model (CLRM) is 

developed in the context of the normal distribution. Doing so gives us exact 
results (you’ll see what this means soon enough!)

– When we get away from the exact distributional assumptions of the CLRM, we 
use large sample approximations. We know from the central limit theorem
(remember this?) that many statistics have an approximately Normal 
distribution as the sample size gets large.

– Consequently, test statistics that we care about turn out to have Normal, Chi-
square, t, or F sampling distributions.



Why do Things get Normal?

• Central Limit Theorems typically say that if you 
add up enough random variables from non-
normal distributions, their sum (or average) 
looks pretty much like a normal distribution.
– Uniform random variables (like a single die) are not 

normal---there is no hump in the pdf.
– But the sum of 2 dice has a point (its pdf looks like a 

triangle).  
– the sum of 2 identical continuous uniforms is 

triangular (its pdf is a triangle).
– The sum of 3 dice has a hump (derive it).



Review: One Die, pdf and cdf

• The pdf for one die 
is uniform.

Outcome (value of roll of single die)

2 3 4 5 6

pdf 1/6 1/6 1/6 1/6 1/6 1/6

cdf 1/6 1/3 1/2 2/3 5/6 1



Review: Sum of Two Dice 
pdf and cdf, in 36ths

2 3 4 5 6 7 8 9 10 11 12

pdf 1 2 3 4 5 6 5 4 3 2 1pdf 1 2 3 4 5 6 5 4 3 2 1

cdf 1 3 6 10 15 21 26 30 33 35 36



The Normal Distribution

• A continuous RV with a normal distribution has a bell-
shaped pdf.
– It is symmetric around its mean.
– It is completelycharacterized by two parameters: its mean (µ) 

and variance (σ2).
– 95% of its probability density lies between µ - 1.96σ and µ + – 95% of its probability density lies between µ - 1.96σ and µ + 

1.96σ
– (draw a picture)

• Usual notation is N(µ ,σ2). 
– To say “X is Normally distributed with mean µ and variance 
σ2” we write X ~ N(µ, σ2)

• A special case is the standard Normal distribution, where µ
= 0 and σ2 = 1, denoted N(0,1).
– Usual notation for the standard normal cdf is Pr(Z ≤ c) = Φ(c)



More About the Normal Distribution

• Useful result 1: If X ~ N(µ, σ2) then a + bX~ N(a + bµ, b2σ2)
• This implies that if X ~ N(µ, σ2), we can standardizeX by 

subtracting off the mean and dividing by the standard 
deviation: Z = (X - µ )/σ.
– After standardizing, Z ~ N(0,1)

• This is useful for computing probabilities. If X ~ N(µ, σ2), Z is • This is useful for computing probabilities. If X ~ N(µ, σ2), Z is 
as above, c1 and c2 are constants, d1 = (c1 - µ )/σ and d2 = (c2 -
µ )/σ then
– Pr(X ≤ c1) = Pr(Z ≤ d1) = Φ(d1)
– Pr(X ≥ c2) = Pr(Z ≥ d2) = 1 – Pr(Z ≤ d2) = 1 -Φ(d2)
– Pr(c2 ≤ X ≤ c1) = Pr(d2 ≤ Z ≤ d1) = Φ(d1) - Φ(d2)

• We can look up these probabilities in tables, e.g. Table B-7
• Useful result 2: If X1, X2, ... , Xn are normally distributed RVs, 

then their sum (and any weighted sum) is also normally 
distributed.



The Chi-square distribution

• As we’ll see soon enough, many important test statistics have a 
Chi-square distribution.
– It is defined by a single parameter: the degrees of freedom, denoted v.
– It is not symmetric – it is positively skewed, which means it has a very long 

tail in the positive direction – very large positive values can occur, though 
not “too often”

– A RV with a Chi-square distribution takes positive values only.– A RV with a Chi-square distribution takes positive values only.
– (draw a picture)

• Standard notation: χ2
v

• Its definition is based on the Normal distribution: 
– if Z ~ N(0,1), then Z2 ~ χ2

1.

• Furthermore, if X1 and X2 are independent χ2
1 RVs, then 

• Likewise, if we add v independent χ2
1 RVs, their sum is 

distributed χ2
v

2
221 ~ χXX +



t Distribution

• A very important test statistic -- called the “t statistic” (not a 
coincidence) -- has a probability distribution called Student’s 
t distribution (or simply a t distribution ).
– It is defined by a single parameter: the degrees of freedom v.
– The t distribution is very similar to the Normal, but with slightly 

thicker tails.thicker tails.
– As v gets large, the t distribution approaches the Normal.

• Standard notation: tv
• Its definition is based on the Normal and Chi-squared 

distributions:
– If Z ~ N(0,1), X ~ χ2

v , and Z and X are independent, then 

vt
vX

Z
~

/



F distribution

• The (Snedecor’s) F distribution is another derived 
distribution that is very important for inference.
– “F test” statistics have an F distribution
– Like the Chi-square, RVs with an F distribution take positive 

values only & the distribution is positively skewedvalues only & the distribution is positively skewed
– It is defined by two degree of freedom parameters: v1 and v2

• Standard notation: Fv1,v2

• Its definition is based on the Chi-square:
– If X1 and X2 are independent Chi-square RVs with v1 and v2

degrees of freedom, respectively, then

2,1
2
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2/
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Learn About the Population 
Using a Sample 

• Our objective as econometricians is to learn something about a population of 
interest. This is called inference.

• The population can be almost any group of people, businesses, plants, animals, 
electrons, etc. that we are interested in, e.g., 

– all Canadian adults
– all firms (businesses)
– all publicly-traded firms
– the thirty largest firms traded on the New York Stock Exchange (i.e.,the DJIA)– the thirty largest firms traded on the New York Stock Exchange (i.e.,the DJIA)

• Exactly what we hope to learn depends on the specific question we hope to answer.
– what is the average labour income in Canada? What is its variance? What proportion of 

Canadian adults earn over $100,000 per year?
– what is the relationship between educational attainment and income?
– what is the elasticity of demand for product X?
– what is the probability that the price of stock X will increase in the next year?
– what is the expected change in the price stock X over the next year?
– what is the expected price of stock X one year from now if the price of oil increases to 

$75/barrel?
• In general, we want to learn something about the probability distribution of a 

variable of interest, or about the joint distribution of a group of variables. 



Sampling
• In theory, we could measure the quantity we care about using the whole 

population.
• But we almost never do, because it’s expensive ($, time, etc.)
• e.g., a VERY expensive way to measure the average income of Canadians 

is to contact every one of them and ask them how much they earn.
• StatCan almostdoes this in the Census of Population

– Every household gets a census form to complete– Every household gets a census form to complete
– 4/5 get “short forms” – these only record who lives at that address, their age, 

sex, marital status, and official language knowledge
– 1/5 get “long forms” – in addition, these ask how much you earn, what industry 

you work in, etc. (unless proposed changes are adopted!)
• Collecting this information from 1/5 of the population is so expensive we 

only do it every 5 years
• But this illustrates the basic idea: rather than contacting everyone in the 

population, a cheaper alternative is to contact a small, representative group 
of individuals and ask them how much they earn

• this group is called a SAMPLE



Populations and Samples
• ECONOMETRIC INFERENCE ABOUT A POPULATION IS ALMOST 

ALWAYS BASED ON A SAMPLE!
• How do we choose which population members to sample?
• In a nutshell: choose them randomly.
• Example: Suppose I’m interested in the probability distribution of my commuting 

time to campus.  Rather than recording my commuting time every day, I could 
randomly select five days each month to record my commuting time.

– Population: every day– Population: every day
– Sample: the days I record my commuting time
– Use the sample data to estimate the population mean, variance, etc.

• Example: Political pollsters try to predict election outcomes.  They ask questions 
like “If there was an election today, which of these candidates would you vote for?”  
Rather than asking everyone in the country, they randomly select a group of 
individuals to answer the question.

– Population: everyone in the country
– Sample: the group selected to answer the question
– Use the sample to estimate the population mean, variance, etc.



Random Sampling
• How is a random sample selected?
• The easiest way is a Simple Random Sample (SRS):randomly choose n

members of the population, each member of the population is equally likely to 
be selected. (like drawing names out of a hat)

• Most surveys are actually NOT simple random samples.
– in a small sample, small groups may not be represented

• e.g., in a SRS of 1000 Canadians, you are very unlikely to select anyone from PEI 
because not many people live there ... but the population you care about is “all 

• e.g., in a SRS of 1000 Canadians, you are very unlikely to select anyone from PEI 
because not many people live there ... but the population you care about is “all 
Canadians.” Consequently many surveys oversamplesmall groups (e.g., 
minorities) to ensure the sample includes all subgroups of interest.

– usually a SRS is more expensive than a cluster sample
• if you’re going door-to-door with surveys, it’s cheapest to survey people/businesses 

that are close together. In a SRS of 1000 Canadians, they’re likely to be spread out 
all over the place. So an alternative is to randomly sample some cities/towns, and 
then randomly sample some streets/blocks in those towns, and then survey everyone 
on that street/block

• These kind of samples are common in practice and a little harder to work with 
than a SRS.



Sampled Objects are Random 
Variables

• Suppose we’re interested in a variable X. 
• We’re going to select a sample of individuals/businesses or whatever 

and measure their value of X.
• The observed measurements of X that comprise our sample are called 

observations.  All the observations together are our data.
• Usually, we denote the n observations in the sample X1, X2, ... ,Xn

– If X was annual earnings, X is the first person’s response, X is the – If X was annual earnings, X1 is the first person’s response, X2 is the 
second, etc 

• Because we randomly select objects into the sample, the valuesof the 
observations X1, X2, ... ,Xn are random.
– We don’t know what values of X we’ll get in advance
– If we had chosen different members of the population, their values of X

would be different.
• Thus, given random sampling, we treat X1, X2, ... ,Xn as random 

variables.



iid Sampling
• In this class we’ll assume a mathematically convenient kind of sample
• Suppose we care about some random variable X.
• Assume that the distribution of X, i.e., f(X) is the same for all members of the 

population.
• Suppose we select a sample of people/businesses (or respondents, in general) 

of size n, and record their values of X.
• Thus our sample is X1, X2, ... ,Xn• Thus our sample is X1, X2, ... ,Xn

• Because each X1, X2, ... ,Xn comes from the same population distribution f(X), 
each Xi has the same marginal distribution: also f(X).
– This is why we can use the sample to learn about the population.

• Because the Xi all have the same marginal distribution, we say they are 
identically distributed .

• Suppose further that the observations are drawn independentlyof one another
– Knowing X1 gives no information about X2,or X3 etc.

• Because the X1, X2, ... ,Xn are sample from the same population distribution and 
independently of one another, we say they are independently and identically 
distributed , or iid



Statistics and Sampling 
Distributions

• A statistic is any function of the sample data. 
– A (scalar-valued) function f(x1,…xN)is a single number associated with each 

set of values that x1,…,xN can take on.

• Because the sample data are random variables, so are statistics.
• We know that all random variables have probability distributions. 

�All statistics have probability distributions (pdfs&cdfs).�All statistics have probability distributions (pdfs&cdfs).
• In fact we have a special name for the probability distribution of a 

statistic: we call it a SAMPLING DISTRIBUTION.
• THIS IS THE MOST IMPORTANT CONCEPT IN THIS 

COURSE!!!
• Every statistic has a sampling distribution because if we drew a 

different sample, the data would take different values, and 
hence so would the statistic.

• The sampling distribution represents uncertainty about the 
population valueof the statistic because it is based on a sample, 
and not based on the whole population.



What the Sampling Distribution 
Tells Us

• Like any probability distribution, the sampling distribution tells us what 
values of the statistic are possible, and how likely the different values are.

• For instance, the mean of the sampling distributiontells us the expected 
value of the statistic. 
– It is a good measure of what value we expect the statistic to take.
– It also tells us where the statistic’s probability distribution is centered.

• The variance of the sampling distributiontells us how “spread out” the • The variance of the sampling distributiontells us how “spread out” the 
distribution of the statistic is. 
– It is usually a function of the sample size.
– It has a special name: the sampling varianceof the statistic (note: this is NOT 

THE SAME AS THE SAMPLE VARIANCE !)
– If the sampling variance is large, then it is likely that the statistic takes a value 

“far” from the mean of the sampling distribution.
– If the sampling variance is small, then it is unlikely that the statistic takes a 

value “far” from the mean of the sampling distribution.
– Usually, the sampling variance gets smaller as the sample size gets bigger.

• A picture shows this.



Some Statistics You Need to Know 
From BUEC 232

• Suppose we draw an iid sample of n observations, X1,X2,...,Xn, from a population.

• The sample meanis:

– it is a “good” estimate of the population mean µ.

• The sample varianceis:
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– the sample standard deviationis

• The sample covarianceis:

– it is a “good” estimate of the population covariance σXY
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Estimation

• An estimator is a statistic that is used to infer the value of an 
unknown quantity in a statistical model

• The sample mean, sample variance, and sample covariance are 
all statistics.  But, they are also all called estimators, because 
they can be used to estimatepopulation quantities.

• That is, the thing we care about is a population quantity like the • That is, the thing we care about is a population quantity like the 
population mean µ. 

• We don’t get to observe µ directly, and we can’t measure its 
value in the population. 

• So we draw a sample from the population, and estimateµ using 
the sample.

• One way to do this is to compute the sample meanin our sample.

• It is a “good” estimate of the population mean, in a sense we’ll 
now make precise.

X



Estimators and Their Properties: 
Bias

• There are lots and lots of estimators, but not all are equally 
“good.”
– The sample mean is an estimator of the population mean.
– So is the median.  
– So is the value of one randomly selected observation.

• This is where the estimator’s sampling distribution comes in –• This is where the estimator’s sampling distribution comes in –
it tells us the estimator’s properties.
– Whether it gives “good” or “bad” estimates of a population quantity.

• Suppose we’re interested in a population quantity Q andR is a 
sample statistic that we use to estimate Q.
– e.g., Q might be the population mean, and R the sample mean

• We say R is an unbiased estimator of Q if E(R) = Q. 
�if R is an unbiased estimator of Q, then Q is the mean 

of the sampling distribution of R
• The biasof R is E(R) – Q. An unbiasedestimator has bias = 0.
• DRAW A PICTURE!!



Estimators and Their Properties: 
Efficiency

• Unbiasedness is a nice property, but it is “weak.”
– There can be many unbiased estimators of a given population quantity.
– Example: suppose we want to estimate the population mean µ. In an iid 

sample, the sample mean is an unbiased estimator of µ:

( ) ( ) µµµ ====








=








= ∑∑∑∑

====

n
nn

XE
n

XE
n

X
n

EXE
nn

i

n

i

n

i

11111

– because E(Xi) = µ for every observation.
– Another unbiased estimator is the value of X1, because E(X1) = µ.

• How do we choose between unbiased estimators?
– We prefer the unbiased estimator with the smaller sampling variance.  

A picture shows the how the sampling distributions of the sample 
mean and a single observation’s value differ.

– Suppose we have two unbiased estimators of Q, call them R1 and R2. 
We say that R1 is more efficient than R2 if Var(R1) < Var(R2).
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Sampling Distribution of the 
Sample Mean

• Suppose X1, X2, ... ,Xn are an iid random sample of size n from a population with 
mean µ and variance σ2.

• The sample mean is unbiased (we showed this already):
• The variance of the sampling distribution of the sample mean(which we also call 

the sampling variance of the sample mean) is σ2/n:
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• In fact, if X1, X2, ... ,Xn are iid draws from the N(µ, σ2) distribution, then:

– Why? We already know the mean and variance of the sampling distribution. And we 
know the sampling distribution is normal because the sample mean is just a linear 
combinations of a bunch of N(µ, σ2) random variables ... and we also know that linear 
combinations of normal RVs are also normally distributed (lecture 4).
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The Sample Variance is Unbiased
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Ways to Characterize the Sampling 
Distribution

1. The easiest way to characterize a statistic’s sampling distribution is to 
calculate some of its features, like its mean and variance.
– We’ve already seen examples of this:

• An estimator’s bias depends on the mean of the sampling distribution.
• Comparing the efficiency of two estimators involves comparing the variance of 

sampling distributions (i.e., comparing their sampling  variances)
– The standard deviation of the sampling distribution of a statistichas a 

special name. We call it the standard error of the statistic.special name. We call it the standard error of the statistic.
2. If we know the exact probability distribution of the population from which 

the sample is drawn (or if we assume one) we can go further and pin down 
the statistic’s exact sampling distribution.
Example: when sampling from a Normal population, the sample mean is normally 

distributed.
3. If we’re unwilling or unable to assume an exact population distribution, we 

can rely on asymptotic theory to derive an approximate sampling 
distribution for the statistic as the sample size tends to infinity. 

4. We can use a computer to simulate the sampling distribution.



The Law of Large Numbers and the 
Central Limit Theorem

• We have some powerful theorems we can use to describe the behavior of a sample 
mean as the sample size tends to infinity.

• Why do we care about sample means so much? It turns out that most statistics we 
care about can be written as the sample mean of something.

• Therefore, we can use these theorems to describe an approximate sampling 
distribution for many statistics.

– Only approximate because our sample is always finite.– Only approximate because our sample is always finite.
• The law of large numberssays that as the sample size n approaches infinity, the 

sample mean will be close to the population mean with very high probability.
– If R → Q as n → ∞, we say R is a consistentestimator of Q.
– The law of large numbers says the sample mean is a consistent estimator of the 

population mean.
• The central limit theorem says that as the sample size n approaches infinity, the 

sampling distribution of the sample mean is approximately Normal with mean µ
and variance σ2/n.

– This is true no matter what the population distribution is.

( )nNxn /,  , as  :CLT 2σµ→∞→



Simulating the Sampling 
Distribution

• When we can’t pin down a statistic’s exact sampling distribution, an alternative to 
asymptotic approximation is to simulate the sampling distribution using a 
computer.

• When we do this with “real” data, we call it bootstrapping. When we do it with 
“fake” data we call it Monte Carlo simulation.

• A Monte Carlo example. 
– Suppose we want to know the sampling distribution of the sample mean when sampling 

from a Chi-square distribution.from a Chi-square distribution.
– We could get the computer to generate 100 random numbers drawn from a Chi-square 

distribution with v degrees of freedom, and compute the sample mean of the randomly 
generated numbers.

– If we repeat this many times (say 10,000) we get 10,000 estimates of the sample mean 
– The distribution of our 10,000 estimates is a good approximation to the sampling 

distribution of the sample mean 
– We could estimate the variance of the sampling distribution of the sample mean using 

the sample variance of the 10,000 estimates of the sample mean
– We could plot the sampling distribution with a histogram. 
– We could compute the proportion of times the sample mean lies in an interval to estimate 

the probability the population mean lies in that interval.
– etc.



Why do we care so much about 
sampling distributions?

• The point of statistical inference is to use the observed sample to 
learn about the population.

• We care about things like the population mean, the population 
variance, etc.

• But we don’t observe population quantities – we only observe the 
sample.sample.

• So we estimatethe population quantities using sample statistics.
• Then, we usually want to test hypotheses about the population 

quantities
– We might want to test whether the population mean is 10.
– Or whether it is less than 6.
– Or whether the population variance is 7.

• Knowing the sampling distribution of a statistic allows us to 
test hypotheses like these.



Hypothesis Testing
• Example: suppose we ask 100 randomly selected people how many times 

they go to the movies in a year.  
• Suppose the sample mean of their responses is 7.  
• This is probably an ok estimate of the population mean, but because the 

sample is “small,” we could be wrong. 
• We might want to test the hypothesis that the true population mean is 8.
• If we know the sampling distribution of the sample mean, we can • If we know the sampling distribution of the sample mean, we can 

compute the probability of finding a sample mean of 7 in a sample of 
100 people, given that the true population mean is actually 8.

• If this probability is “small,” then we can be fairly certain that the true 
population mean is not 8.

• If this probability is “big” then we cannot rule out the possibility that the 
true population mean is 8.

• We formalize this with a hypothesis test (next day).


