Statistics Review Part 2

Distributions, Sampling,
Estimation



Review: Expected Values

Think of theexpected valugor mean) of a RV as the long-
run average value of the RV over many repeated trials

You can also think of it as a measure of the “middle” of a
probability distribution, or a “good guess” of the value of a
RV

DenotecE(X) or uy

More preciselyE(X) is aprobability-weighted average of all
possible outcomes of X

Example: rolling a die

— (1) =f(2) =f(3) =f(4) =f(5) =f(6) = 1/6

—  E(X) =1*(1/6) + 2*(1/6) + 3*(1/6) + 4*(1/6) + 5*(1/6) + 6*(1/6)
= 1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6
=21/6 = 3.5

Interpretation?



Review: More about E(X)

 The general case for a discrete RV

— Suppose R\ can takek possible valueg,, X, ... , % with
associated probabllitigs, p,, ... , g then

E(X) = Z B %

 The general case for a continuous RV involves an integral
o E(X) is a “mathematical operator” (like +, -, *, /).
— It is alinear operator, which means we can pass it through
addition and subtraction operators

— That is, If a and b are constants ahgd a RV,
E(a+ bX) =a+ bE(X)



Review:Conditional Distributions

* The distribution of a random variabYeconditional on
another random variabktaking a specific value is
called theconditional distribution of Y given X.

« The conditional probabllity that takes valug/ whenX
takes valuex is written PrY =y | X = x).

* In general, Pr(Y = v. X = x
Pr(Y = y|X = X) = <Pr()2/’:x) )

 Intuitively, this measures the probability thvat yand
X=X, given that X = x.



Review: Conditional Expectation

« The mean of the conditional distribution¥givenXis called the
conditional expectation(or conditional mean) of Y given X.

e |t's the expected value o, given thatX takes a particular value.

 It's computed just like a regular (unconditioneXpectation, but
uses the conditional distribution instead of thegmaal.

— If Ytakes one ok possil?(le valuey, v,, ...,y then
E(Y X =x)=2y Py =y | X =x)

=1



Review: Table of Means

Immigrant
Cohort N(WAGES) mean(WAGES)
Before 1950 66 27561
1950s 573 30682
1960s 1,260 31760
1970s 2,679 33365
1980s 2,416 27478
1990s 5,412 20283
2000s 2,463 17103
Cdn-Born 17,730 38317
Temporary 608 21737

This is a Table of Means. But, we can interpret it as an (estimate of)
a table of conditional expectations.

What is Y in the conditional expectation formula? What is X?

What are the probabilities: Pr(Y =y X=X

What are we summing over?



Review: Uniform Distribution

uniform distribution is completely characterised by two
parameters: a,b

If X~U(a,b), (“the r.v. X is uniformly distributed between a
and b”) then
— f(x)=1/(b-a) and F(x)=(x-a)/(b-a)
— special case: if a=0 and b=1 gives the “standard uniform”
o f(x)=1 and F(x)=x
lots of things are uniform:

— values of a roll of a single die; probability of rain falling on a
particular part of the sidewalk;

as with any distribution, P[y<x<z]=F(z)-F(y)
— Ply<x<z]=(z-a)/(b-a)-(y-a)/(b-a)=(z-y)/(b-a)
— draw pictures (tails, range), do calculations



Some Useful Probabillity
Distributions

* There are four important probability distributicthait we’ll encounter
repeatedly:

— TheNormal distribution

— TheChi-square distribution

— Student’d distribution

— Snedecor’$ distribution

— the normal is the basis of all of these: the last 3 are ddnwedthe firs

 Why are these important?

— Most theory regarding the classical linear regression modelN{J iR
developed in the context of the normal distribution. Doing so gives us exact
results (you'll see what this means soon enough!)

— When we get away from the exact distributional assumptions ofltR&Cwe
use large sample approximations. We know fronctrdral limit theorem
(remember this?) that many statistics have an approximatetgailor
distribution as the sample size gets large.

— Consequently, test statistics that we care about turn out toNlearel, Chi-
square, t, or F sampling distributions.



Why do Things get Normal?

 Central Limit Theorems typically say that if you
add up enough random variables from non-
normal distributions, their sum (or average)
looks pretty much like a normal distribution.

— Uniform random variables (like a single die) are not
normal---there is no hump in the pdf.

— But the sum of 2 dice has a point (its pdf looks like a
triangle).

— the sum of 2 identical continuous uniforms is
triangular (its pdf is a triangle).

— The sum of 3 dice has a hump (derive it).



Review: One Die, pdf and cdf

e The pdf for one die

IS uniform.
Outcome (value of roll of single die)
2 3 4 5 6
pdf 1/6 1/6 1/6 1/6 1/6 1/6
cdf 1/6 1/3 1/2 2/3 5/6 1




Review: Sum of Two Dice
ndf and cdf, in 36ths

5 |6 |7 |8 |9 |10|11 |12
pdf 4 |5 |6 |5 |4 |3 |2 |1
cdf 10 [15 |21 |26 |30 |33 |35 |36




The Normal Distribution

e A continuous RV with a normal distribution has a bell-
shaped pdf.

— It is symmetric around its mean.

— It iscompletely characterized by two parameters: its mggn (
and varianced?).

— 95% of its probability density lies betwep - 1.9¢c andp +
1.965

— (draw a picture)
« Usual notation is N(,c?).

— To say X is Normally distributed with meam and variance
o2’ we write X ~ N(u, 2

e A special case is thrandard Normal distribution, whereu
= 0 ando? = 1, denoted N(0,1).

— Usual notation for the standard normal cdf isZRr€) = d(c)



More About the Normal Distribution

Useful result 1: IfX ~ N(u, 6) thena + bX~ N(a + by, b%c?)
This implies that iiX ~ N(u, %), we canstandardize X by
subtracting off the mean and dividing by the standard
deviation:Z= (X - u)/o.

— After standardizingZ ~N(0,1)

This is useful for computing probabilities. X ~ N(u, 62), Zis

as aboveg, andc, are constantsl, = (c, - u )/oc andd, = (c, -
u)/c then

— PrX<c)=Prz<d)) =o(dy)
- PrX>c,)=Prg>d,)=1-Prg<d,) =1-d(d,)
- Prc,<X<c)=Prd,<Z2<d,)) =o(d,) - ©(d,)
We can look up these probabilities in tables, e.g. Table B-7

Useful result 2: 1iX,, X,, ..., X, are normally distributed RVs,
then their sum (and any weighted sum) is also normally
distributed.



The Chi-square distribution

As we’ll see soon enough, many important testsstes have a
Chi-square distribution.

— lItis defined by a single parameter: tegrees of freedomdenoted..

— Itis not symmetric — it ipositively skewed which means it has a very long
tail in the positive direction — very large positive values can oticaugh
not “too often”

— A RV with a Ch-square distribution takes positive values c
— (draw a picture)

Standard notatiory?,

Its definition is based on the Normal distribution

— if Z~ N(0,1), therZ? ~ >,

Furthermore, iX; andX, areindependenty?, RVs, thenx, + X, ~ x2

Likewise, if we addr independeni?, RVs, their sum is
distributedy?,



t Distribution

« A very important test statistic -- called thiestatistic” (not a
coincidence) -- has a probability distribution cal&tddent’s
t distribution (or simply at distribution ).
— It is defined by a single parameter: the degréé®edomv.

— Thet distribution is very similar to the Normal, but Wwislightly
thicker tails

— Asv gets large, thedistribution approaches the Normal.
e Standard notatiort;,

 Its definition is based on the Normal and Chi-squared
distributions:

— If Z~N(0,1),X ~ ,, andZ andX areindependent then
- ~t

JX/Iv




F distribution

 The (Snedecor’'dy distribution is another derived
distribution that is very important for inference.

— “F test” statistics have dnadistribution

— Like the Chi-square, RVs with &ndistribution take positive
values only & the distribution is positively skev

— It is defined by two degree of freedom parameteksindv?2
 Standard notatior,, ,,

* Its definition is based on the Chi-square:

— If X; andX, areindependentChi-square RVs withl andv2
degrees of freedom, respectively, then

X, /vl
- |:v],v2
X, Iv2




Learn About the Population
Using a Sample

Our objective as econometricians is to learn something alpmpgdation of
interest. This is callemhference.

The population can belmost anygroup of people, businesses, plants, animals,
electrons, etc. that we are interested in, e.qg.,

— all Canadian adults

— all firms (businesses)

— all publicly-traded firms

— the thirty largest firms traded on the New York&td&xchange (i.e.,the DJI

Exactlywhat we hope to learn depends on the specific question we hope to answer.

— what is the average labour income in Canada? Whigtvariance? What proportion of
Canadian adults earn over $100,000 per year?

— what is the relationship between educationalrattant and income?

— what is the elasticity of demand for product X?

— what is the probability that the price of stockvHl increase in the next year?
— what is the expected change in the price stockef the next year?

— what is the expected price of stock X one yeanfrmw if the price of oil increases to
$75/barrel?

In general, we want to learnsomething about the probability distribution of a
variable of interest, or about thejoint distribution of a group of variables.



Sampling

In theory, we could measure the quantity we camuausing the whole
population.

But we almost never do, because it's expensivar(, etc.)

e.g., a VERY expensive way to measure the avenagene of Canadians
IS to contact every one of them and ask them hoahntloey earn.
StatCamalmostdoes this in the Census of Population

— Every household gets a census form to com

— 4/5 get “short forms” — these only record who lives at that addressage,
sex, marital status, and official language knowledge

— 1/5 get “long forms” — in addition, these ask how much you earn, whatmpdust
you work in, etc. (unless proposed changes are adopted!)
Collecting this information from 1/5 of the poptitm is so expensive we
only do it every 5 years

But this illustrates the basic idea: rather thantacting everyone in the
population, a cheaper alternative is to contaghall, representative group
of individuals and ask them how much they earn

this group is called SAMPLE



Populations and Samples

ECONOMETRIC INFERENCE ABOUT A POPULATION IBLMOST
ALWAYS BASED ON A SAMPLE!

How do we choose which population members to sample?
In a nutshell: choose therandomly.

Example: Suppose I'm interested in the probability distribution o€amymuting
time to campus. Rather than recording my commuting ¢wveey day| could
randomly select five days each month to record my commuting time.

— Population: every d:

— Sample: the days | record my commuting time

— Use the sample data to estimate the populatiomnvagiance, etc.
Example: Political pollsters try to predict election outcomBsey ask questions
like “If there was an election today, which of these candidategdayou vote for?”
Rather than askingveryone in the countryhey randomly select a group of
individuals to answer the question.

— Population: everyone in the country

— Sample: the group selected to answer the question

— Use the sample to estimate the population meaiane, etc.



Random Sampling

How is a random sample selected?

The easiest way is@imple Random Sample (SRSxandomly choosa
members of the population, each member of the population is equalytbkel
be selected. (like drawing names out of a hat)

Most surveys are actually NOT simple random samples.

— in a small sample, small groups may not be represented

* e.g.,in a SRS of 1000 Canadians, you are verkelglio select anyone from P
because not many people live there ... but thelptpo you care about is “g
Canadians.” Consequently many surveysrsamplesmall groups (e.g.,
minorities) to ensure the sample includes all sobgs of interest.

— usually a SRS is more expensive thaiuater sample

« if you're going door-to-door with surveys, it's €lpest to survey people/businesses
that are close together. In a SRS of 1000 Canadiaegre likely to be spread out
all over the place. So an alternative is to rangasaimple some cities/towns, and
then randomly sample some streets/blocks in thmseg, and then survey everyone
on that street/block

These kind of samples are common in practice and a little harderk with
than a SRS.



Sampled Objects are Random
Variables

Suppose we’'re interested in a variakle

We’'re going to select a sample of individuals/besses or whatever
and measure their value Xf

The observed measurements<dhat comprise our sample are called
observations All the observations together are olata.

Usually, we denote theobservations in the samptg, X, ... , X,

— If Xwas annual earningX, is the first person’s respon<;, is the
second, etc

Because we randomly select objects into the sartipe®aluesof the
observation&;, X,, ... ,X are random.

— We don’t know what values ofwe’ll get in advance

— If we had chosen different members of the popuatiheir values oK
would be different.

Thus, given random sampling, we tregt X,, ... ,X, as random
variables.



Ild Sampling

In this class we’ll assume a mathematically convenient kirsduwiple
Suppose we care about some random variable

Assume that the distribution &£ i.e.,f(X) is the same foall members of the
population.

Suppose we select a sample of people/businessessfmmdents in general)
of sizen, and record their values &t

Thus our sample X, X,, ... , X%,

Because eacH,, X,, ... ,X, comes from the same population distributipx,
eachX has the same marginal distribution: &iSg).

— This is why we can use the sample to learn about the population.

Because the; all have the same marginal distribution, we say they are
identically distributed.

Suppose further that the observations are diadependently of one another
— Knowing X, gives no information aboud,,or X, etc.

Because th&,, X,, ... ,X, are sample from the same population distribution and
iIndependently of one another, we say theyirsdtependently and identically
distributed, oriid



Statistics and Sampling
Distributions

A statistic is any function of the sample data.

— A (scalar-valuedfunction f(x1,...xN)is a single number associated with each
set of values that x1,...,XxN can take on.

Because the sample data are random variablese sbagistics.
We know that all random variables have probabdistributions.

=> All statistics have probability distributions (pdfs&cdfs).

In fact we have a special name for the probabdiggribution of a
statistic: we call it ©@AMPLING DISTRIBUTION.

THIS IS THE MOST IMPORTANT CONCEPT IN THIS
COURSE!M

Every statistic has a sampling distribution beealie drew a
different sample, the data would take different valies, and
hence so would the statistic.

The sampling distribution representscertainty about the
population value of the statistic because it is based on a sample,
and not based on the whole population.



What the Sampling Distribution
Tells Us

Like any probability distribution, the samplingsttibution tells us what
values of the statistic are possible, and howyikieé different values are.

For instance, themean of the sampling distributiontells us the expected
value of the statistic.

— Itis a good measure of what value we expect the statishkeo t

— It also tells us where the statistic’s probability distrittis centered.
Thevariance of the sampling distributior tells us how “spread out” tf
distribution of the statistic is.

— Itis usually a function of the sample size.

— It has a special name: tekampling varianceof the statistic (note: this is NOT
THE SAME AS THESAMPLE VARIANCE )

— If the sampling variance is large, then iikely that the statistic takes a value
“far” from the mean of the sampling distribution.

— If the sampling variance is small, then itidikely that the statistic takes a
value “far” from the mean of the sampling distribution.

— Usually, the sampling variance gets smaller as the saraplgeis bigger.
A picture shows this.



Some Statistics You Need to Know
From BUEC 232

Suppose we draw an iid samplenasbservationsX,,X,,...,X, from a population.

Thesample varianceis:

— itis a “good” estimate of the population variarnée
— thesample standard deviations s=+'s’

Thesample covariancas:

SXY

:ni—l izl (Xi - X)(Yi _\?)

— itis a “good” estimate of the population covagan,,

— thesample correlation is

rXY = SXY/SXSY




Estimation

An estimator Is a statistic that i1s used to infer the value of an
unknown quantity in a statistical model

The sample mean, sample variance, and sample covariance are
all statistics. But, they are also all calkestimators because
they can be used &stimatepopulation quantities.

That is, the thing we care about is a population quantity lik
population meap.

We don’t get to observedirectly, and we can’'t measure its
value in the population.

So we draw a sample from the population, asﬁnateu using
the sample.

One way to do this is to compute twmple meann our sample.

It is a “good” estimate of the population mean, in a sense we'll
now make precise.



Estimators and Their Properties:
Bias

There are lots and lots of estimators, but not all are equally
“good.”

— The sample mean is an estimator of the population mean.

— So is the median.

— So is the value of one randomly selected observation.

This is where the estimator’'s sampling distribution come
it tells us the estimator’s properties.

— Whether it gives “good” or “bad” estimates of a population quantity.

Suppose we're interested in a population quaQigndRis a
sample statistic that we use to estin@te
— e.g.,Q might be the population mean, aRdhe sample mean

We sayRis anunbiased estimator ofQ if E(R) = Q.

=2 if Ris an unbiased estimator of), then Q is the mean
of the sampling distribution of R

Thebiasof Ris E(R) — Q.An unbiasedestimator has bias = 0.
DRAW A PICTURE!



Estimators and Their Properties:
Efficiency

Unbiasedness is a nice property, but it is “weak.”

— There can be many unbiased estimators of a given population quantity

— Example: suppose we want to estimate the population méaman iid
sample, the sample mean is an unbiased estimator of

> 1< 1 s 1< 1< 1
E(X)=E(—in]=—E(inj=—ZE(Xi)=—Zu=—rw=u
Nz N \i= Nz N N
— becaus&(X,) = u for every observation.
— Another unbiased estimator is the valuXgfbecaus&(X,) = u.
How do we choose between unbiased estimators?

— We prefer the unbiased estimator with the sma#enpling variance.

A picture shows the how the sampling distributiohthe sample
mean and a single observation’s value differ.
— Suppose we have two unbiased estimato€3, oall themR

andR,.
We say thaR, is more efficientthanR, if Var(R,) < Var(Rzl)




Sampling Distribution of the
Sample Mean

Suppose&,, X, ... , X are an iid random sample of sizérom a population with
meanu and variance2.

The sample mean is unbiased (we showed this alre@ ): 7,

Thevariance of the sampling distribution of the samptemealwhich we also call
thesampling variance of the sample mearis ¢2/n:

var(X)= Var( ij —Var(ZXij {ZVar .Con(xi,xj)}
:F;Var( izi :—na _%

In fact, if X;, X,, ... ,X, are iid draws from tha&l(u, 62) distribution, then:

X ~ N(/J, o/ n)

— Why? We already know the mean and variance of the sampling distribAidrve
know the sampling distribution is normal because the sample meanhadifsar
combinations of a bunch df(u, 62 random variables ... and we also know that linear
combinations of normal RVs are also normally distributed (lecture 4).




The Sample Variance is Unbiased




Ways to Characterize the Sampling
Distribution

1. The easiest way to characterize a statistic’pagdistribution is to
calculate some of its features, like its mean aarthnce.

— We've already seen examples of this:
« An estimator’s bias depends on the mean of thekagndistribution.
« Comparing the efficiency of two estimators invaha@mparing the variance of
sampling distributions (i.e., comparing their samgpl variances)

— Thestandard deviation of the sampling distribution of a statistichas a
special name. We call it ttstandard error of the statistic

2. If we know the exact probability distributiontbie population from which
the sample is drawn (or if we assume one) we cdargoer and pin down
the statistic’s exact sampling distribution.

Example: when sampling from a Normal population, the sample meamslhor
distributed.

3. If we're unwilling or unable to assume an exampydation distribution, we
can rely omrasymptotic theoryto derive arapproximate sampling
distribution for the statistic as the sample ser&dt to infinity.

4. We can use a computer to simulate the samplstglalition.



The Law of Large Numbers and the
Central Limit Theorem

* We have some powerful theorems we can use to describe the behavgamople
mean as the sample size tends to infinity.

« Why do we care about sample means so much? It turns out thatatissts we
care about can be written as the sample meaaroéthing

« Therefore, we can use these theorems to descriappoximate sampling
distribution for many statistics.
— Only approximate because our sample is alway<l
 Thelaw of large numberssays that as the sample sizapproaches infinity, the
sample mean will be close to the population mean with very high prdipabili
— If R— Qasnh— o, we sayRis aconsistentestimator ofQ.

— The law of large numbers says the sample mean iansistent estimator of the
population mean

« Thecentral limit theorem says that as the sample sizapproaches infinity, the
sampling distribution of the sample mean is approximately Normhalm&anu
and variance?/n.

— This is true no matter what the population distribution is.

CLT :asn - o, X - N(,u,azln)




Simulating the Sampling
Distribution

When we can’t pin down a statistic’s exact sampling distributiomlternative to
asymptotic approximation is ®imulate the sampling distribution using a
computer.

When we do this with “real” data, we calbibotstrapping. When we do it with
“fake” data we call iMonte Carlo simulation.

A Monte Carlo example.

Suppose we want to know the sampling distributibthe sample mean when sampling
from a Ch-square distributiol

We could get the computer to generate 100 randanbars drawn from a Chi-square
distribution withv degrees of freedom, and compute the sample mete ochAndomly
generated numbers.

If we repeat this many times (say 10,000) we @¢dd0 estimates of the sample mean

The distribution of our 10,000 estimates is a gapproximation to the sampling
distribution of the sample mean

We could estimate the variance of the samplingiligion of the sample mean using
the sample variance of the 10,000 estimates addh®le mean

We could plot the sampling distribution with atbgram.

We could compute the proportion of times the samptan lies in an interval to estimate
the probability the population mean lies in thaemal.

etc.



Why do we care so much about
sampling distributions?

The point of statistical inference Is to use theaved sample to
learn about the population.

We care about things like the population mean ptiygulation
variance, etc.

But we don’t observe population guantities — weyasdserve the
sample

So weestimatethe population quantities using sample statistics.

Then, we usually want ti@st hypothesesbout the population
guantities

— We might want to test whether the population mean is 10.
— Or whether it is less than 6.
— Or whether the population variance is 7.

Knowing the sampling distribution of a statistic alows us to
test hypotheses like these.



Hypothesis Testing

Example: suppose we ask 100 randomly selectedgopy many times
they go to the movies in a year.

Suppose the sample mean of their responses is 7.

This is probably an ok estimate of the populatiean, but because the
sample is “small,” we could be wrong.

We might want to test the hypothesis that the projgulation mean is 8.

If we know the sampling distribution of the samplemean, we car
compute the probability of finding a sample mean o¥ in a sample of
100 people, given that the true population mean ectually 8.

If this probability is “small,” then we can be ffigi certain that the true
population mean is not 8.

If this probability is “big” then we cannot rulaibthe possibility that the
true population mean is 8.

We formalize this with &ypothesis tes{next day).



